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Barrier crossing of a semiflexible ring polymer
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Motivated by the dynamics of a membrane in response to an external force, we study the thermally activated
crossing of a semiflexible ring polymer over a potential barrier. For the bistable potential of Kramers type
smoothly varying over a long length scale, we calculate the crossing rate using the multidimensional Kramers’
rate theory and the functional integral method. We find that, due to its conformational fluctuation, the rate for
a flexible ring is much larger than that for a stiff ring. For a sufficiently long chain length or a sufficiently weak
bending modulus, the ring undergoes a compact-stretch transition. The stretched conformation of the chain
results in a decrease of the activation energy and so the further increase of the rate. This result implies that the
soft matter conformational flexibility and adaptability facilitate the barrier crossing.
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I. INTRODUCTION semiflexible ring chain of infinite length for application to
membrane dynamics.

The dynamical response of soft matter such as polymers In Sec. Il we define our semiflexible polymer model and
and membranes to external forces and confinements is kriefly describe theéN-dimensional Kramers rate theof8].
ubiquitous problem occurring in biological situations. It en- Using the method of functional integral, we calculate the
compasses various situations such as polymer transpd@quisite partition functions and the transition states in Sec.
across membranes, DNA electrophoresis, and cell or vesicldl- In Sec. IV, the barrier escaping rate of the semiflexible
transport in narrow channels. Many studies on polymer prob!ing polymer is calculated. Concluding remarks are given in
lems have been reported in the context of entropic barrieP®¢: V.
and entropic trapping arising from inhomogeneous environ-
ments[1—4]. It is well known from these reports that the Il. MODEL

entropic effect due to the conformational flexibility of mac-  \ve consider a long and semiflexible ring chain consisting

romolecules affects their dynamical properties. of N identical beads with the following Hamiltonian:
Consider a fluid membrane subject to an external force or

a confinement. In order to understand some aspects of its K . L,

dynamical response, we consider the Kramers problem of Ho:ggl (Fae1— 2+ Fh-1)%, (2.9

barrier crossing applied to the membrane. When viewed in

two dimension, the membrane can be regarded as a semiflextherer, denotes the position of theth bead and the bend-

ible ring polymer characterized by a bending modulus. Ining modulusk is related to temperaturé and persistence

this paper, we consider the Kramers problem where we sedkngthl, of the chain asc= (kBTIp)/I3, wherel is the spac-

the rate of a semiflexible polymer crossing the barrier of ang between the beads. Note that the next-nearest interactions

bistable potential acting on each segment. For simplicity, wéetween the beads of the chain are considered to describe the

neglect the excluded volume effect between segments.  internal stiffness or semiflexibility of the chain. This model
Recently there have been a number of studies on this different from the typical bead-spring model of flexible

barrier-crossing of flexible polymef&—7]. Based upon the ¢chain in which only the nearest neighbor coupling such as

multidimensional Kramers theory formulated by Lan§@}, ~ (Fn+1—n)? is considered7,9]. o o

they[5,7] considered the effects of chain flexibility and col- ~NOw let us suppose that the above semiflexible chain is

lective modes on the efficiency in the crossing. For a chaidn't'a”Y trapped in the left well of a one-dimensional bistable

spring constant smaller and chain length larger than criticaPotential.

values, the chain undergoes coil-to-stretch transition, thereby N

enhanc_ing the crossing rate_. On the oth_er_hand, the work of Hy= E V(Xp), (2.2

Sebastian and Pauib] considered the limit of very long n=1

chains, where they found there emerges another kind of )

mode, namely, kink motion, which facilities the efficient bar- _1.2.2 1 2,2, “B 4

rier crossing. The work here extends the earlier wailko a V() = 305" 7 0pXn T 72 Xn @3

N

where V(+a)=0 and the barrier height isv,=V(0)
*Email: kiblee@ewha.ac.kr = %wéaz. Hence, two local wells at-a are separated by the
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barrier centered at=0 and w3 is the curvature of the po- For the partition function at the saddle poizg, the contri-
tential at the barrier top. The total energy of the chain nebution of the unstable mode is implicitly omitted. It is im-

glecting the excluded volume effect is given by portant to note that the escape rate Ej6) is determined
only by the local properties near the well and the saddle
~ oint.
H({F)=Ho+Hy. 24 P

In the next sections, we identify the well defined transi-
tion states, calculate the partition functions and finally obtain

. ) the barrier crossing rates of our semiflexible ring polymer
of the whole chain over the barrier, we assume the escaplxj,-Sing the functionagll integral method g poly

process to be a Brownian motion occurring in the
3N-dimensional configuration space of the segments given

in the above Hamiltonian. This assumption is valid in the Ill. TRANSITION STATES
limit of overdamping where the momenta of the beads have . . .
already relaxed on the time scale of their spatial diffusion of Our N-bead chain undgr the b|s§able poter_m_al £33
interest to us. It is easy to see that the dynamics along the €&1 D€ regarded as a continuous string for sufficiently large

direction is relevant to the escape process of the chain whil@nd for not-too-weak coupling between the beads so as to
the chain undergoes free diffusion along thandz direc-  emain close to each other. In order to take the continuous

tions. Hence, we restrict our analysis to theirection with ~ IMit, let us define a continuous varialte- Q/N with 0<s
<1. Replacingx, with x(s), %,_; with Nfyds, andx,
—X, with dx/Nds, we have an energy functional from Eg.

N (2.5) such as

N
H({Xn}): gngl (Xn+1_2Xn+Xn—1)2+nZl V(Xn).
(2.9

It is straightforward to show that there are two stable con-
formations of the chain in the configuration spaps,}.
These represent the states with all beads being localized neghere
+a or —a denoted agx,}, and{x,}_, respectively. We
want to obtain the rate of escape over the barrier f{ap)
to {X,} . The activation energy of this process is determined h(X(S),X(5),%(5)= =7 X(5)2+ V(X(S)). (3.2
by the path crossing a saddle point in the configuration space 2N
satisfying 6H|;, =0 and involving only one unstable

mode. We call this saddle poifit,} a transition state. If the Herex=dx/ds andx=d?x/ds”.

transition state of the chain is well defined and the barrier The stationary path satisfyirgH =0 is determined by the
crossing is much slower than any internal relaxations in thdzuler—Langrange equation

chain, then the escape raf is given by applying the

N-dimensional Kramers rate theory in the overdamped limit

1
H(x(s))=Nfods h(x(s),X(s),X(s)), (3.1

formulated by Langef8] d? (an| d[oh RALI (33
ds’lox) dslox/ ox '
ws Z
R= 27:7, = \2mkgTe AAH, (2.6)  where results in the following differential equation for the

- stationary configuration denoted ®&s):
wherewys is the frequency of the unstable mode at the saddle )
point andB~ 1=kgT. The termy is the damping constant for Kk d%  , wp
each bead; here we neglect the hydrodynamic interaction be- N4 dsd wpX+ 2% =0. (3.4

tween the beads. The activation enefgyl and the partition
function associated with the fluctuation of the chain near th

transition statdinitial state, Zi(Z_), can be written as She solution is subject to the periodic boundary condition

X(s+1)=x(s). It can be easily shown that three trivial real
solutions ofx(s)=0,+a are the only solutions if (2)*«
AH=H({Xn}s) —H{Xn} ), (2.7 >N*w3. Hence, in either case of sufficiently stiff or short
chain determined by the above inequality, the configuration
X(s)=0 is the only transition state of the chain crossing the
7 = dN{Xn}efﬂ[HGxn})fH<{7n}7>]7 (2.8  barrier from the left stable state(s)=—a, to the right
ell stable onex(s)=a.
Once the stationary solutions fgrare obtained, the fluc-
tuations at the well and the saddle points are to be investi-
Zs:f dN—l{Xn}—ﬂ[H({xn})—H({Yn}s)]_ (2.9 gated for the purpose of calcglating the partition functions in
saddle Eqgs.(2.8 and(2.9) by expansion
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UG oxa) =G + 5 S H 6,06
| (3.5
where

9°H
IXmdX|

H®= : (3.6)

{Xn}

Noting th iflexibl I l'i i . . . .
oting that our semifiexible polymer model is described b}/]lgue to the complexity of the above differential equation, we

the interactions of the next-nearest neighboring beads, t

second-order term is straightforwardly written as the follow-

ing differential operator in the continuous limit;

k d* 3w?

@~ 24T By
A g et gz X

3.7

The eigenfunctionsy;(s) of H® satisfying the periodic
boundary condition are

¥;(s)=A, cos 2rjs+B;sin2wjs, j=0,1,2; N— 1(,3 .

where Ap=1 and Bj=* \/2—A]2 by normalization condi-
tion.

At X(s) = *a, the trivial solutions of the Euler—Lagrange
equation(3.4), we have

H® yy(s)=¢; ¢(s),

2

€ =0tk (3.9

2mj\4
N

where w” =2w3 are the curvatures of the potential at the

wells. The positivity of the eigenvalues for the allj con-
firms that stationary solutiongs) = + a are the stable states
as expected befol,7].

At X(s) =0, another trivial solution of the Euler-Lagrange
equation, we have

H(Z)lﬂj(s):ﬂtlﬂj(s),

27j\*
N/

e}=—w25+/< (3.10

2

Since the lowest eigenvalué= — w3 is always negative,

PHYSICAL REVIEW B4 041801

tain the stationary solutions fa#; >0, let us define new pa-
rametersé= etllwé and n(s)=Xx(s)/a. Then the differential
equation(3.4) is rewritten as

1+ 6 d*y

7 3_
2 ag 1T =0

(3.1)
b 14 BTV
B NAwZB '

restrict 5 to being negative anfis| <1. Since(s; 8) will be
small in this limit, we expandy(s; ) aboutés=0 as

o] 5”
7(5;0) =181 2, <79, (3.12
|7
77( )_{aén}ﬁ_o' (313

Note that7 is expanded with the leading order ¢fd| to
equate the Eq(3.11 order by order consistently. For in-
stance, considering only the zeroth and the first orders, Eq.
(3.11) is decomposed as

1 d4y©
@m? a7 0 (3.19
1 d*y®
2m? ds n't=-79+[7%P=0. (319

These equations with the periodic boundary conditions,
7M(s+1)=7"(s), are easily solved as

7®=a, cos 2rs+a, sin 21rs,

(3.1
7'Y=b,(a;,a,)cos 6mrs+b,(a;,a,)sin 6ms, (3.1

where b;(a;,a,) are constant functions ad, anda, and
aj+a5=4/3 from the boundary condition fay(.

Hence, a new solution of the Euler-Lagrange equation
(3.4) denoted byx(s) is, in the limit of sufficiently small
and negatives,

N PO

a

2
Slolyas), (318

X(s)=0 is indeed the saddle point with only one unstable

eigenmoday(s) only if €)= —w§+ k(2w/N)*>0 as men-
tioned in the above.
But, in case ofet1<0,Y(s)=O has at least two unstable

modes,(S) andi(S). Hence, it is necessary to find a new

saddle point configuration satisfying E.4) and having

and also the eigenvalue equation féf?) can be written as

1+6 d*
(2m)* ds*

2
wp

— 1428l =Fh;.  (3.19

only one unstable mode. Considering that the three triviallreating the last term of the left-hand side as a perturbation,
stationary solutions of the Euler-Lagrange equation are thsince d is small enough,

only solutions where (2)*x>N“w3, that ise}>0, the new

saddle point configuration with only one unstable mode will

be the stationary solution whesj<0 and e}>2>0. To ob-

1
A6E22I6Iwéf0dswf%:wélél(zwj,l), (3.20
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E=e+Ae 3.2
T (320 z,=f D[ ox(s)]e #4H-, 4.3
_  2r(i4 -4 well
=wg[(j*=1)+[8](2—)*+ 6,01, (3.22
where we have used the fora}lz—wé[l—(l—|5|)j4] and zs:f’ D[ ox(s)]e AAHs, (4.4)
saddle

6 j is the Kronecker delta.
This result implies that the slightly stretched chain state
(3.18 represents the new saddle point with only one unstablé/here the prime’() in Z; means that the unstable modgis

. ~ . . ~t excluded.
e'ge”moge ¢°~’ since the Iowe_st elgenvalue:o::(l Expressingdx(s) in terms of the eigenfunctiong; (s) of
—2|68]) wg=—g is always negative and all the oth@s.; ¢ operatoH® as !
are positive. It is also worthwhile to point out that the eigen-
value of the lowest mode is smaller but those of all the N-1
higher modes are larger at this stretched state than the corre- OX(s)= E X;i(9), (4.5
sponding values at the compact statés) =0. =0

In this section we have obtained the transition sta’[e?h fluctuat
%(s)=0 for (2m)*k>N*w? andXy(s) = *ay2[8]/3y(s) € energy fluctuations are
for (27)*k<N“w3. These results imply that a sufficiently N
stiff and not-so-londi.e., k> k. or N<N_.) polymer crosses AH =— E e X? (4.6
the barrier keeping itcompactconformation and, on the
other hand, a not-so-stiff or sufficiently longe., k< or
N>N,.) polymer crosses the barristretchingits conforma- to2
tion. The critical values for the conformational transition, AHS=2 121 €] (4.7)
called compact-stretch transition, are defined as
= w3(N/27)* andN =27 (x/w3)* Using these transiton  The partition functions are then obtained as
states, we calculate the barrier-crossing rates in the next sec- N1

tion.
H

IV. BARRIER-CROSSING RATES 61

27TkBT

As described in Sec. I, to calculate the escape (21 Nt

we first evaluate the net activation eneryid in Eq. (2.7), = (2mkgT)"? HO
and partition functionZ ~ and Zg given by Egs.(2.8) and .
(2.9), respectively. Note that the frequeney of the unstable ST
mode at the saddle point isg for the compact conformation Z= H B
and wg for the stretched conformation. ,

j 41-1/2
a)2_+K T) } y (48)

N—-1

A. k> or N<N, _
=(2mkgT)(N~ D2
(k)™ 2 [

277_] 471-1/2
o . o — gt ) } :
The activation energy iAH=NV,= Nw§a2/4 in this re- N

gime, sincexs=0. To obtain the partition functions, it is (4.9
necessary to evaluate the energy fluctuations near the left

well and the saddle point, hence, for,} = —a and{x,}s and the barrier-crossing rate in E@.6) for the sufficiently

=0, respectively. Up to the second order, the energy fluctuastiff («> ;) or not-so-long polymerN<N,) is

tions are , ,
H(h) —H (%) Ru=Ro H IR S
=H[—a+ ox(s)]—H[—a] (4.10
= f dsox(S)H{? ox(s)=AH_, (4.1) where
wgW _
H({X) — H({X}o) Ro= e ", (4.1

=HLox(s)]~HIO] which is the rate for the infinitely stiff chaind— ).

N (1 2 It is important to note thaR,> R, for all finite x. Hence
ZEJ'O dsox(s)Hgiox(s)=AHs. (4.2 the inherent flexibility of the chain enhances the barrier-
crossing rate even though it could be quite stiff. The ratio
The partition functions in Eqs(2.8) and (2.9) are now R, /R, for a fixed x also increases as the size of the chidin
written as the functional integrals increasesR;, /R, can be simplified in the case df>1 as
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e WCE=E

2
B

o2

Ry,

N (,1)2 1/4 N (,02 1/4
Ro™ ’Z(H) +S'”h22'(ﬂ>

] . (4.12

The rate(4.10 or (4.12 apparently diverges whem3  We restrict ourselves to an activation energy great enough to
=x(2m/N)* or, equivalently, whene‘lzo, i.e., at the overcome the thermal energyT for the Kramers rate to be

compact-stretch transition. This is a consequence of th@alid.

second-order expansion in E@.5), which treats the barrier ~ The energy fluctuation near the saddle point in this regime
as harmonic; on such a harmonic barrier the chain can b&

infinitely extended and have negatively infinite free energy N-1

[5]. To circumvent this difficulty, we have to consider the AH :E S Eix? (4.16
next order contribution, which is the fourth. This anharmonic S 25 Tl '

correction regularizes the singularity, yielding a finite rate
Where'éf is given in EQ.(3.22. The partition functiornZ, is

R=R,f(8YNBw3a?), (4.13  then obtained as
as shown in the figures. Note that= ég_/wéz(K/KC)—l N1 2mkgT
=(N./N)*—1 and the function Zs= Ly &
X X2 X2 (2mkgT)(N-1)72 N-1 2i ) 41112
f(x)=—exp(—>K (—) (4.19 _emel) _=2 <7
Jom 12/ 12 2 L Dp+ k|
with K being the modified Bessel function of the second (4.1

kind, falls to zero as/x whenx approaches zero. Away from
the transition or for large values &f this function increases
to 1 to retain the above results of rate12).

and hence the barrier-crossing rate for the sufficiently long or
not-so-stiff polymer is

. o n it Nl:[l 4+ (02 /k)(N27)* 19
. < or > = . ~ ] .
- ST _ "va e V(@30 (N2
In this regime, the corresponding activation energy is cal-
culated using the transition solutiog(s) in Eq. (3.18 as where
AH=H(X)~H(-a)=NV,~ §Nw3a®s* (4.19 Ry 2O oo pNIV; (gt e] 4.19

2@
It implies that the conformational change of the chain to the 4

stretched state at the barrier top, which is energetically more Note thatv2 in R, came fromZ in Eq. (4.17) and the
favorable, lowers the activation energy, leading to an infactor 4 denotes the degeneracy of the transition states in Eq.
crease of the rate. It is, however, worthwhile to point out that(3.18. In the limit of N>1, the rate becomes

? s ( ?0_53 ) v \/sinz[(N/Z)(wz 181 V4] + SInkR[ (N/2) (2 dic) 4] w20

Ro ) sil (N/2)(@3/ k) Y*]sinH (N/2) (@3] k) Y]

The apparent divergence of the rate due to harmonic agengthsN,, signaling the compact-stretch transition as men-
proximation as in the sufficiently stiff chain also disappearstioned before, which, with the anharmonic correction, are
if the anharmonic terms are considered. The anharregularized to be finite. It is shown that above the transition
monic  correction again modifies the ratR as (N>Ng) the rate dramatically increases beydRgl Figure
Ruf (|4 \/N,szBaz)/(Z\/i) and yields a finite rate at the tran- 2 depicts the rates of the chain with respect to bending rigid-
sition point §=0. ity « for two values of chain length. Also for the flexibility

Figure 1 depicts the rates of the chain with respect tabove the transition €<«c) the rate is much enhanced
chain lengthN for two different bending rigiditiesc. Sharp  compared tdR,.
peaks appear in the harmonic approximation at critical chain In this subsection we have only considered the limit of a
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~ -180
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~170 ~
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N x/we?
FIG. 1. Rates of the semiflexible chain Wsfor the bending FIG. 2. Rates of the semiflexible chain xéw3 for the chain

rigidities fixed atx/ w3=1x 10° and 3x 10°, respectively. The data lengths fixed atN=150 and 200, respectively. The data are also
are obtained whengV,=1 and the rate is in units of obtained when gV,=1 and the rate is in units ofr,
=(wgw_)/(27y). The dashed line represeni,, the rate at =(wgw_)/(27y). Sharp peaks atczwé(leﬂ-)“ disappear with
which the ring is infinitely stiff ¢—o0). Sharp peaks aiN. anharmonic correction.
=27(kl w3)** disappear with anharmonic correctiotted ling.
the enhancement comes from the lowered activation energy
slightly negatives, since it can be treated analytically. For an due to conformational transition. We may say that the con-
arbitrary 6<0 it can be analyzed numerically within the formational fluctuation and adjustment in response to a back-
same formalism as long as the activation energy is largeground facilitate soft matter barrier-crossing. This could be a
than the thermal energy and a similar result is expeff¢éd pervasive mechanism of soft matter escaping from a low free
energy region to a higher one, but the details will be different
V. CONCLUDING REMARKS depending upon the situations.
) Recently, an experimental result on the passage of DNA
In this paper we have calculated the rate of thermallynolecules driven by an electric field through a microfabri-
activated escape of a semiflexible polymer ring through anied channel has been reporfed]. In this experiment, the
external bistable potential barrier using multidimensional|Onger DNA were found to escape the barrier faster than
Kramers rate theory. For this purpose, we have obtained thg,qrer ones, overcoming the barrier by stretching its mono-
stationary points of the energy functional in the continuousyers. The operating mechanism is similar to ours in a sense
limit and energy fluctuations near these points to calculatgnat the stretched conformation overcomes the barrier more
the requisite partition functions via the functional integral easily than the coiled one, although the experimental situa-
formalism. . _ tion is not identical to our case. Nevertheless, the Kramers
For a sufficiently stiff or not-so-long case, i.&>«c Or  hroblem we deal with here provides a convenient paradigm

N<N., our semiflexible ring keeps its compact conforma-o; ynderstanding the generic features of the soft matter dy-
tion even at the barrier top while crossing the barrier. Théyamics in various situations.

escape rate of the ring increases with the activation energy
unchanged, as the ring is more flexible or longer.
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