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Barrier crossing of a semiflexible ring polymer
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Motivated by the dynamics of a membrane in response to an external force, we study the thermally activated
crossing of a semiflexible ring polymer over a potential barrier. For the bistable potential of Kramers type
smoothly varying over a long length scale, we calculate the crossing rate using the multidimensional Kramers’
rate theory and the functional integral method. We find that, due to its conformational fluctuation, the rate for
a flexible ring is much larger than that for a stiff ring. For a sufficiently long chain length or a sufficiently weak
bending modulus, the ring undergoes a compact-stretch transition. The stretched conformation of the chain
results in a decrease of the activation energy and so the further increase of the rate. This result implies that the
soft matter conformational flexibility and adaptability facilitate the barrier crossing.
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I. INTRODUCTION

The dynamical response of soft matter such as polym
and membranes to external forces and confinements
ubiquitous problem occurring in biological situations. It e
compasses various situations such as polymer trans
across membranes, DNA electrophoresis, and cell or ves
transport in narrow channels. Many studies on polymer pr
lems have been reported in the context of entropic bar
and entropic trapping arising from inhomogeneous envir
ments @1–4#. It is well known from these reports that th
entropic effect due to the conformational flexibility of ma
romolecules affects their dynamical properties.

Consider a fluid membrane subject to an external force
a confinement. In order to understand some aspects o
dynamical response, we consider the Kramers problem
barrier crossing applied to the membrane. When viewed
two dimension, the membrane can be regarded as a sem
ible ring polymer characterized by a bending modulus.
this paper, we consider the Kramers problem where we s
the rate of a semiflexible polymer crossing the barrier o
bistable potential acting on each segment. For simplicity,
neglect the excluded volume effect between segments.

Recently there have been a number of studies on
barrier-crossing of flexible polymers@5–7#. Based upon the
multidimensional Kramers theory formulated by Langer@8#,
they @5,7# considered the effects of chain flexibility and co
lective modes on the efficiency in the crossing. For a ch
spring constant smaller and chain length larger than crit
values, the chain undergoes coil-to-stretch transition, ther
enhancing the crossing rate. On the other hand, the wor
Sebastian and Paul@6# considered the limit of very long
chains, where they found there emerges another kind
mode, namely, kink motion, which facilities the efficient ba
rier crossing. The work here extends the earlier work@7# to a
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semiflexible ring chain of infinite length for application t
membrane dynamics.

In Sec. II we define our semiflexible polymer model a
briefly describe theN-dimensional Kramers rate theory@8#.
Using the method of functional integral, we calculate t
requisite partition functions and the transition states in S
III. In Sec. IV, the barrier escaping rate of the semiflexib
ring polymer is calculated. Concluding remarks are given
Sec. V.

II. MODEL

We consider a long and semiflexible ring chain consist
of N identical beads with the following Hamiltonian:

H05
k

2 (
n51

N

~rWn1122rWn1rWn21!2, ~2.1!

whererWn denotes the position of thenth bead and the bend
ing modulusk is related to temperatureT and persistence
length l p of the chain ask5(kBTlp)/ l 3, wherel is the spac-
ing between the beads. Note that the next-nearest interac
between the beads of the chain are considered to describ
internal stiffness or semiflexibility of the chain. This mod
is different from the typical bead-spring model of flexib
chain in which only the nearest neighbor coupling such
(rWn112rWn)2 is considered@7,9#.

Now let us suppose that the above semiflexible chain
initially trapped in the left well of a one-dimensional bistab
potential,

H15 (
n51

N

V~xn!, ~2.2!

V~xn!5 1
4 vB

2a22 1
2 vB

2xn
21

vB
2

4a2 xn
4, ~2.3!

where V(6a)50 and the barrier height isVt5V(0)
5 1

4 vB
2a2. Hence, two local wells at6a are separated by th
©2001 The American Physical Society01-1
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K. LEE AND W. SUNG PHYSICAL REVIEW E64 041801
barrier centered atx50 andvB
2 is the curvature of the po

tential at the barrier top. The total energy of the chain
glecting the excluded volume effect is given by

H~$rWn%!5H01H1 . ~2.4!

To obtain the thermally activated crossing or escape
of the whole chain over the barrier, we assume the esc
process to be a Brownian motion occurring in t
3N-dimensional configuration space of the segments gi
in the above Hamiltonian. This assumption is valid in t
limit of overdamping where the momenta of the beads h
already relaxed on the time scale of their spatial diffusion
interest to us. It is easy to see that the dynamics along tx
direction is relevant to the escape process of the chain w
the chain undergoes free diffusion along they and z direc-
tions. Hence, we restrict our analysis to thex direction with

H~$xn%!5
k

2 (
n51

N

~xn1122xn1xn21!21 (
n51

N

V~xn!.

~2.5!

It is straightforward to show that there are two stable c
formations of the chain in the configuration space$xn%.
These represent the states with all beads being localized
1a or 2a denoted as$x̄n%1 and $x̄n%2 , respectively. We
want to obtain the rate of escape over the barrier from$x̄n%2

to $x̄n%1 . The activation energy of this process is determin
by the path crossing a saddle point in the configuration sp
satisfying dHu$x̄n%s

50 and involving only one unstabl

mode. We call this saddle point$x̄n%s a transition state. If the
transition state of the chain is well defined and the bar
crossing is much slower than any internal relaxations in
chain, then the escape rateR is given by applying the
N-dimensional Kramers rate theory in the overdamped li
formulated by Langer@8#

R5
vs

2pg

Zs

Z2

A2pkBTe2bDH, ~2.6!

wherevs is the frequency of the unstable mode at the sad
point andb215kBT. The termg is the damping constant fo
each bead; here we neglect the hydrodynamic interaction
tween the beads. The activation energyDH and the partition
function associated with the fluctuation of the chain near
transition state~initial state!, Zs(Z2), can be written as

DH5H~$x̄n%s!2H~$x̄n%2!, ~2.7!

Z25E
well

dN$xn%e
2b@H~$xn%!2H~$x̄n%2!#, ~2.8!

Zs5E
saddle

dN21$xn%
2b@H~$xn%!2H~$x̄n%s!#. ~2.9!
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For the partition function at the saddle pointZs , the contri-
bution of the unstable mode is implicitly omitted. It is im
portant to note that the escape rate Eq.~2.6! is determined
only by the local properties near the well and the sad
point.

In the next sections, we identify the well defined tran
tion states, calculate the partition functions and finally obt
the barrier crossing rates of our semiflexible ring polym
using the functional integral method.

III. TRANSITION STATES

Our N-bead chain under the bistable potential Eq.~2.3!
can be regarded as a continuous string for sufficiently largN
and for not-too-weak coupling between the beads so a
remain close to each other. In order to take the continu
limit, let us define a continuous variables5n/N with 0<s
<1. Replacingxn with x(s), Sn51

N with N*0
1ds, andxn11

2xn with dx/Nds, we have an energy functional from Eq
~2.5! such as

H„x~s!…5NE
0

1

ds h„x~s!,ẋ~s!,ẍ~s!…, ~3.1!

where

h„x~s!,ẋ~s!,ẍ~s!…5
k

2N4 ẍ~s!21V„x~s!…. ~3.2!

Here ẋ5dx/ds and ẍ5d2x/ds2.
The stationary path satisfyingdH50 is determined by the

Euler–Langrange equation

d2

ds2 S ]h

] ẍD2
d

ds S ]h

] ẋD1
]h

]x
50, ~3.3!

where results in the following differential equation for th
stationary configuration denoted asx̄(s):

k

N4

d4x̄

ds42vB
2 x̄1

vB
2

a2 x̄350. ~3.4!

The solution is subject to the periodic boundary conditi
x(s11)5x(s). It can be easily shown that three trivial re
solutions of x̄(s)50,6a are the only solutions if (2p)4k
.N4vB

2. Hence, in either case of sufficiently stiff or sho
chain determined by the above inequality, the configurat
x̄(s)50 is the only transition state of the chain crossing t
barrier from the left stable state,x̄(s)52a, to the right
stable one,x̄(s)5a.

Once the stationary solutions forx are obtained, the fluc-
tuations at the well and the saddle points are to be inve
gated for the purpose of calculating the partition functions
Eqs.~2.8! and ~2.9! by expansion
1-2
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BARRIER CROSSING OF A SEMIFLEXIBLE RING POLYMER PHYSICAL REVIEW E64 041801
H~$x̄n1dxn%!5H~$x̄n%!1
1

2! (m,l
H ~2!dxxdxl¯ ,

~3.5!

where

H ~2!5F ]2H

]xm]xl
G
$x̄n%

. ~3.6!

Noting that our semiflexible polymer model is described
the interactions of the next-nearest neighboring beads,
second-order term is straightforwardly written as the follo
ing differential operator in the continuous limit:

H ~2!5
k

N4

d4

ds42vB
21

3vB
2

a2 x̄2~s!. ~3.7!

The eigenfunctionsc j (s) of H (2) satisfying the periodic
boundary condition are

c j~s!5Aj cos 2p js1Bj sin 2p js, j 50,1,2,•,N21,
~3.8!

where A051 and Bj56A22Aj
2 by normalization condi-

tion.
At x̄(s)56a, the trivial solutions of the Euler–Lagrang

equation~3.4!, we have

H ~2!c j~s!5e j
2c j~s!,

e j
25v2

2 1kS 2p j

N D 4

, ~3.9!

where v2
2 52vB

2 are the curvatures of the potential at t
wells. The positivity of the eigenvaluese j

2 for the all j con-
firms that stationary solutionsx̄(s)56a are the stable state
as expected before@5,7#.

At x̄(s)50, another trivial solution of the Euler-Lagrang
equation, we have

H ~2!c j~s!5e j
tc j~s!,

e j
t52vB

21kS 2p j

N D 4

. ~3.10!

Since the lowest eigenvaluee0
t 52vB

2 is always negative,
x̄(s)50 is indeed the saddle point with only one unsta
eigenmodec0(s) only if e1

t 52vB
21k(2p/N)4.0 as men-

tioned in the above.
But, in case ofe1

t ,0, x̄(s)50 has at least two unstabl
modes,c0(s) andc1(s). Hence, it is necessary to find a ne
saddle point configuration satisfying Eq.~3.4! and having
only one unstable mode. Considering that the three tri
stationary solutions of the Euler-Lagrange equation are
only solutions where (2p)4k.N4vB

2, that ise1
t .0, the new

saddle point configuration with only one unstable mode w
be the stationary solution whene1

t ,0 ande j >2
t .0. To ob-
04180
he
-

l
e
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tain the stationary solutions fore1
t .0, let us define new pa

rametersd5e1
t /vB

2 andh(s)5 x̄(s)/a. Then the differential
equation~3.4! is rewritten as

11d

~2p!4

d4h

ds4 2h1h350, ~3.11!

d5211
~2p!4k

N4vB
2 .

Due to the complexity of the above differential equation, w
restrictd to being negative andudu!1. Sinceh(s;d) will be
small in this limit, we expandh(s;d) aboutd50 as

h~s;d!5Audu (
n50

`
dn

n!
h~n!~s!, ~3.12!

h~n!5F]nh

]dnG
d50

. ~3.13!

Note thath is expanded with the leading order ofAudu to
equate the Eq.~3.11! order by order consistently. For in
stance, considering only the zeroth and the first orders,
~3.11! is decomposed as

1

~2p!4

d4h~0!

ds4 2h~0!50, ~3.14!

1

~2p!4

d4h~1!

ds4 2h~1!52h~0!1@h~0!#350. ~3.15!

These equations with the periodic boundary conditio
h (n)(s11)5h (n)(s), are easily solved as

h~0!5a1 cos 2ps1a2 sin 2ps, ~3.16!

h~1!5b1~a1 ,a2!cos 6ps1b2~a1 ,a2!sin 6ps, ~3.17!

where bi(a1 ,a2) are constant functions ofa1 and a2 and
a1

21a2
254/3 from the boundary condition forh (1).

Hence, a new solution of the Euler-Lagrange equat
~3.4! denoted byx̄s(s) is, in the limit of sufficiently small
and negatived,

x̄s~s!

a
56Auduh~0!~s!56A2

3
uduc1~s!, ~3.18!

and also the eigenvalue equation forH (2) can be written as

vB
2F 11d

~2p!4

d4

ds42112uduc1
2G c̃ j5 ẽ j

t c̃ j . ~3.19!

Treating the last term of the left-hand side as a perturbat
sinced is small enough,

De j
t.2uduvB

2E
0

1

dsc j
2c1

25vB
2 udu~21d j ,1!, ~3.20!
1-3
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ẽ j
t5e j

t1De j
t ~3.21!

5vB
2@~ j 421!1udu~22 j 41d j ,1!#, ~3.22!

where we have used the forme j
t52vB

2@12(12udu) j 4# and
d i , j is the Kronecker delta.

This result implies that the slightly stretched chain st
~3.18! represents the new saddle point with only one unsta
eigenmode c̃0 , since the lowest eigenvalueẽ0

t 52(1
22udu)vB

2[2ṽB
2 is always negative and all the othersẽ j >1

t

are positive. It is also worthwhile to point out that the eige
value of the lowest mode is smaller but those of all t
higher modes are larger at this stretched state than the c
sponding values at the compact state,x̄(s)50.

In this section we have obtained the transition sta
x̄s(s)50 for (2p)4k.N4vB

2 and x̄s(s)56aA2udu/3c1(s)
for (2p)4k,N4vB

2. These results imply that a sufficientl
stiff and not-so-long~i.e., k.kc or N,Nc! polymer crosses
the barrier keeping itscompactconformation and, on the
other hand, a not-so-stiff or sufficiently long~i.e., k,kc or
N.Nc! polymer crosses the barrierstretchingits conforma-
tion. The critical values for the conformational transitio
called compact-stretch transition, are defined askc

5vB
2(N/2p)4 andNc52p(k/vB

2)1/4. Using these transition
states, we calculate the barrier-crossing rates in the next
tion.

IV. BARRIER-CROSSING RATES

As described in Sec. II, to calculate the escape rate~2.6!
we first evaluate the net activation energyDH in Eq. ~2.7!,
and partition functionsZ2 and Zs given by Eqs.~2.8! and
~2.9!, respectively. Note that the frequencyvs of the unstable
mode at the saddle point isvB for the compact conformation
and v̄B for the stretched conformation.

A. kÌkc or NËNc

The activation energy isDH5NVt5NvB
2a2/4 in this re-

gime, sincex̄s50. To obtain the partition functions, it i
necessary to evaluate the energy fluctuations near the
well and the saddle point, hence, for$x̄n%252a and $x̄n%s
50, respectively. Up to the second order, the energy fluc
tions are

H~$xn%!2H~$x̄n%2!

5H@2a1dx~s!#2H@2a#

.
N

2 E
0

1

dsdx~s!H $2a%
~2! dx~s![DH2 , ~4.1!

H~$xn%!2H~$x̄n%s!

5H@dx~s!#2H@0#

.
N

2 E
0

1

dsdx~s!H $0%
~2!dx~s![DHs . ~4.2!

The partition functions in Eqs.~2.8! and ~2.9! are now
written as the functional integrals
04180
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Z25E
well

D@dx~s!#e2bDH2, ~4.3!

Zs5E
saddle

8
D@dx~s!#e2bDHs, ~4.4!

where the prime (8) in Zs means that the unstable modec0 is
excluded.

Expressingdx(s) in terms of the eigenfunctionsc j (s) of
the operatorH (2) as

dx~s!5 (
j 50

N21

Xjc j~s!, ~4.5!

the energy fluctuations are

DH25
N

2 (
j 50

N21

e j
2Xj

2, ~4.6!

DHs5
N

2 (
j 51

N21

e j
tXj

2. ~4.7!

The partition functions are then obtained as

Z25 )
j 50

N21 A2pkBT

e j
2

5~2pkBT!N/2 )
j 50

N21 Fv2
2 1kS 2p j

N D 4G21/2

, ~4.8!

Zs5 )
j 51

N21 A2pkBT

e j
t

5~2pkBT!~N21!/2 )
j 50

N21 F2vB
21kS 2p j

N D 4G21/2

,

~4.9!

and the barrier-crossing rate in Eq.~2.6! for the sufficiently
stiff (k.kc) or not-so-long polymer (N,Nc) is

Rh5R0 )
j 51

N21 AF j 41
v2

2

k S N
2p D 4G Y F j 42

vB
2

k S N
2p D 4G ,

~4.10!

where

R05
vBv2

2pg
e2bNVt, ~4.11!

which is the rate for the infinitely stiff chain (k→`).
It is important to note thatRh.R0 for all finite k. Hence

the inherent flexibility of the chain enhances the barri
crossing rate even though it could be quite stiff. The ra
Rh /R0 for a fixedk also increases as the size of the chainN
increases.Rh /R0 can be simplified in the case ofN@1 as
1-4
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Rh

R0
.S vB

2

v2
2 D 1/4AH sin2FN2 S v2

2

4k D 1/4G1sinh2FN2 S v2
2

4k D 1/4G J Y H sinFN2 S vB
2

k D 1/4GsinhFN2 S vB
2

k D 1/4G J . ~4.12!
th
r

b
rg
e

nic

nd

a

th
o
in
ha

h to

me

or

Eq.
The rate~4.10! or ~4.12! apparently diverges whenvB
2

5k(2p/N)4 or, equivalently, whene1
t 50, i.e., at the

compact-stretch transition. This is a consequence of
second-order expansion in Eq.~3.5!, which treats the barrie
as harmonic; on such a harmonic barrier the chain can
infinitely extended and have negatively infinite free ene
@5#. To circumvent this difficulty, we have to consider th
next order contribution, which is the fourth. This anharmo
correction regularizes the singularity, yielding a finite rate

R5Rhf ~dANbvB
2a2!, ~4.13!

as shown in the figures. Note thatd5e1
t /vB

25(k/kc)21
5(Nc /N)421 and the function

f ~x!5
x

A6p
expS x2

12DK1/4S x2

12D ~4.14!

with K being the modified Bessel function of the seco
kind, falls to zero asAx whenx approaches zero. Away from
the transition or for large values ofd, this function increases
to 1 to retain the above results of rate~4.12!.

B. kËkc or NÌNc

In this regime, the corresponding activation energy is c
culated using the transition solutionx̄s(s) in Eq. ~3.18! as

DH5H~ x̄s!2H~2a!5NVt2
1
6 NvB

2a2d2. ~4.15!

It implies that the conformational change of the chain to
stretched state at the barrier top, which is energetically m
favorable, lowers the activation energy, leading to an
crease of the rate. It is, however, worthwhile to point out t
a
ar
a

-

t

a
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we restrict ourselves to an activation energy great enoug
overcome the thermal energykBT for the Kramers rate to be
valid.

The energy fluctuation near the saddle point in this regi
is

DHs5
N

2 (
j 51

N21

ẽ j
tXj

2, ~4.16!

whereẽ j
t is given in Eq.~3.22!. The partition functionZs is

then obtained as

Zs5 )
j 51

N21 A2pkBT

ẽ j
t

5
~2pkBT!~N21!/2

&
)
j 51

N21 F2ṽB
21kS 2p j

N D 4G21/2

~4.17!

and hence the barrier-crossing rate for the sufficiently long
not-so-stiff polymer is

Rh5
4

&
R̃0 )

j 51

N21 Aj 41~v2
2 /k!~N/2p!4

j 42~ṽB
2/k!~N/2p!4, ~4.18!

where

R̃05
ṽBv2

2pg
e2bN@Vt2~vBad!2/6#. ~4.19!

Note that& in Rh came fromZs in Eq. ~4.17! and the
factor 4 denotes the degeneracy of the transition states in
~3.18!. In the limit of N@1, the rate becomes
Rh

R̃0

.2&S ṽB
2

v2
2 D 1/4Asin2@~N/2!~v2

2 /4k!1/4#1sinh2@~N/2!~v2
2 /4k!1/4#

sin@~N/2!~ṽB
2/k!1/4#sinh@~N/2!~ṽB

2/k!1/4#
. ~4.20!
n-
re

ion

id-

d

f a
The apparent divergence of the rate due to harmonic
proximation as in the sufficiently stiff chain also disappe
if the anharmonic terms are considered. The anh
monic correction again modifies the rateR as
Rhf (uduANbvB

2a2)/(2&) and yields a finite rate at the tran
sition pointd50.

Figure 1 depicts the rates of the chain with respect
chain lengthN for two different bending rigiditiesk. Sharp
peaks appear in the harmonic approximation at critical ch
p-
s
r-

o

in

lengthsNc , signaling the compact-stretch transition as me
tioned before, which, with the anharmonic correction, a
regularized to be finite. It is shown that above the transit
(N.NC) the rate dramatically increases beyondR0 . Figure
2 depicts the rates of the chain with respect to bending rig
ity k for two values of chain length. Also for the flexibility
above the transition (k,kC) the rate is much enhance
compared toR0 .

In this subsection we have only considered the limit o
1-5
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slightly negatived, since it can be treated analytically. For a
arbitrary d,0 it can be analyzed numerically within th
same formalism as long as the activation energy is lar
than the thermal energy and a similar result is expected@7#.

V. CONCLUDING REMARKS

In this paper we have calculated the rate of therma
activated escape of a semiflexible polymer ring through
external bistable potential barrier using multidimensio
Kramers rate theory. For this purpose, we have obtained
stationary points of the energy functional in the continuo
limit and energy fluctuations near these points to calcu
the requisite partition functions via the functional integ
formalism.

For a sufficiently stiff or not-so-long case, i.e.,k.kc or
N,Nc , our semiflexible ring keeps its compact conform
tion even at the barrier top while crossing the barrier. T
escape rate of the ring increases with the activation ene
unchanged, as the ring is more flexible or longer.

On the other hand, for a sufficiently large or not-so-s
case, i.e.,N.Nc or k,kc , the compact and homogeneo
conformation of the ring changes to a new stretched con
mation at the barrier top. This conformational transition s
nificantly lowers the activation energy and therefore e
hances the escape rate beyond those of the compact ring
rate enhancement is significant for a longer or more flex
ring due to the chain flexibility. But the larger contribution

FIG. 1. Rates of the semiflexible chain vsN for the bending
rigidities fixed atk/vB

2513105 and 33105, respectively. The data
are obtained whenbVt51 and the rate is in units ofr 0

5(vBv2)/(2pg). The dashed line representsR0 , the rate at
which the ring is infinitely stiff (k→`). Sharp peaks atNc

52p(k/vB
2)1/4 disappear with anharmonic correction~dotted line!.
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the enhancement comes from the lowered activation en
due to conformational transition. We may say that the c
formational fluctuation and adjustment in response to a ba
ground facilitate soft matter barrier-crossing. This could b
pervasive mechanism of soft matter escaping from a low
energy region to a higher one, but the details will be differ
depending upon the situations.

Recently, an experimental result on the passage of D
molecules driven by an electric field through a microfab
cated channel has been reported@10#. In this experiment, the
longer DNA were found to escape the barrier faster th
shorter ones, overcoming the barrier by stretching its mo
mers. The operating mechanism is similar to ours in a se
that the stretched conformation overcomes the barrier m
easily than the coiled one, although the experimental si
tion is not identical to our case. Nevertheless, the Kram
problem we deal with here provides a convenient parad
for understanding the generic features of the soft matter
namics in various situations.
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FIG. 2. Rates of the semiflexible chain vsk/vB
2 for the chain

lengths fixed atN5150 and 200, respectively. The data are a
obtained when bVt51 and the rate is in units ofr 0

5(vBv2)/(2pg). Sharp peaks atkc5vB
2(N/2p)4 disappear with

anharmonic correction.
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